Appendix F

Drainage

<u>APPENDIX F – DRAINAGE</u>

As part of the drainage review for the Sixth Concession Road/North Talbot Road Class Environmental Assessment, we reviewed the Provincial/Division Road Drainage Study and Sanitary Sewer Functional Design Report (Aecon – May 2011) and the Southwood Lakes Development – Hydraulic Design Report (HGS – June 1990) and have compared the impacts of this study's Preferred Design to the outcomes identified in these reports.

Sixth Concession Road

The Provincial/Division Road Drainage Study and Storm and Sanitary Sewer Functional Design Report (Aecom – May 2011), Sixth Concession Road was assumed to consist of 13.0m of hard surface within a 21.9m right-of-way. This resulted in a runoff coefficient of 0.62.

The Preferred Design for Sixth Concession Road as determined by this document results in a hard surface of 13.2m within a 21.9m right-of-way. The corresponding runoff coefficient is 0.62.

There is an increase of 0.2m (13.0m vs. 13.2m) in hard surface width between the Provincial/Divison Road study and the Preferred Design. This increase in hard surface in not large enough to have an adverse effect on the assumptions made in the Provincial/Division Road Drainage study and the corresponding drainage design of downstream facilities.

North Talbot Road

Runoff Coffecient

Using the current hard surfaced area for the North Talbot Road corridor, it was determined that the existing runoff coefficient is 0.50. The existing hard surface averages 8.25m in width.

Based on the recommended cross section for the corridor, there will be a hard surface of 13.6m width, a runoff coefficient of 0.57 was calculated.

Runoff Quantity

An increase in hard surface area will typically produce an increase in the quantity of runoff produced. Since the size of the North Talbot Road corridor is a small percentage (2.0%) of the larger Southwood Lakes drainage area and is located very close to the downstream outlets of the sewer system, the increase to the flowrates are minor in comparison to the total expected flowrate (avg. increase of 2.1%).

The following calculations illustrate the impacts to the expected flowrates at the storm water management facilities due to the improvements of the North Talbot Road corridor.

Sixth Concession / North Talbot Environmental Assesment Appendix F

Storm Flowrate Increase at Southwood Lakes

Lake Laguna (Lake 2)

Total Area	3.2 ac	(HGS Report at c = 0.35)
North Talbot Area	2.61 ac	(ESR at $c = 0.57$)
Remaining Area	0.59 ac	(HGS Report at $c = 0.35$)

Incremental A x CTotal A x C for Drainage Area
$$0.59 \times 0.35 = .21$$
North Talbot $= 1.7$ $2.61 \times 0.57 = 1.49$ Upstream $= 25.2$ 1.7 $= 26.9$

$$Q = CiA$$

= 34.5 x 1.89
 $Q = 65.2 cfs$

Percentage Increase in Flows

% change in flowrate =
$$\frac{65.2 - 63.9}{63.9}$$

= 2.0 % increase

Sixth Concession / North Talbot Environmental Assesment Appendix F

Storm Flowrate Increase at Southwood Lakes

Lake Grande (Lake 3)

Total Area	15.6 ac	(HGS Report at c = 0.35)
North Talbot Area	3.1 ac	(ESR at $c = 0.57$)
Remaining Area	12.5 ac	(HGS Report at $c = 0.35$)

Total A x C for Lake #3 (Lake Grande)

Q = CiA = 28.3 x 2.02 Q = 57.2 cfs

Percentage Increase in Flows

Existing expected flowrate at Lake #3 = 56 cfs (from MH 23 sewer)

Proposed flowrate at Lake #3 = 57.2 cfs

% change in flowrate =
$$\frac{57.2 - 56}{56}$$

28.3

= 2.1 % increase

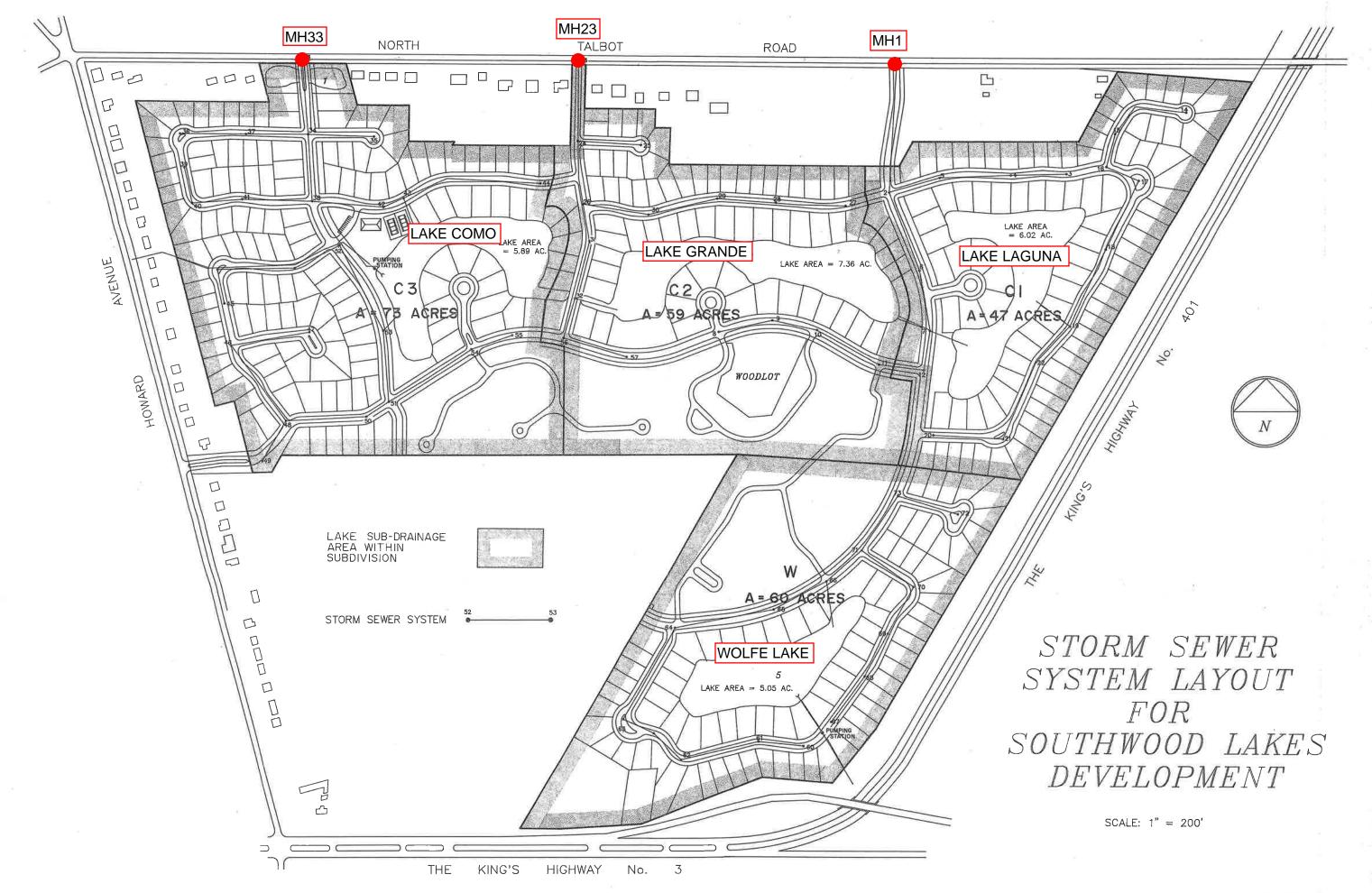
Sixth Concession / North Talbot Environmental Assesment Appendix F Storm Flowrate Increase at Southwood Lakes

norm now ate merease at southweed E

Lake Como (Lake 4)

Total Area	18.4 ac	(HGS Report at c = 0.35)
North Talbot Area	3.09 ac	(ESR at $c = 0.57$)
Remaining Area	15.31 ac	(HGS Report at $c = 0.35$)

Incremental A x CTotal A x C for Drainage Area
$$15.31 \times 0.35 = 5.34$$
North Talbot= 7.12 $3.09 \times 0.57 = 1.76$ Upstream= 17.5 7.12 24.62


Total A x C for Lake #4 (Lake Laguna) = 27.68

Percentage Increase in Flows

Existing expected flowrate at Lake #4
$$= 53.3$$
 cfs (from MH 1 sewer)
Proposed flowrate at Lake #4 $= 54.5$ cfs

% change in flowrate =
$$\frac{54.5 - 53.3}{53.3}$$

= 2.3 % increase

STORM CURVE 20 MINS. ENTRY TIME VELOCITY RANGE - 2-5 to 10 F.RS MIN. PIPE SIZE -12"DIA.

PARKS & PLAYGROUNDS - 0.20

RESIDENTIAL SINGLE JUPLEX - 0-35 ROW HOUSING - C·50

APARTMENTS - 0.60 - 0.70 COMMERCIAL & INDUSTRIAL

PROJECT NAME

STORM SEWER DESIGN CHART

SOUTHWOOD LAKES SUBDIVISION FRELIMINARY DESIGN

MADE BY RCS SHEET Nº 1 OF 3 CHECKED BY ______ PROJECT Nº 89-1284

DATE	_3	JAN	LUARY	199	0
Carl -					_

MIN.	PIPE SIZE - 12" DIA					Y BUILT,		- (D·95											DATE	3	JANUA	LRY 19	90	
	SEWER LOCATION	ON			AREA			A	x C		RAINE	ALL IN	TENSITY	Q			SEWE	R (DESIGN	l			PRO	FILE	
DWG. NO.	STREET	FROM	то	LAND USE & REMARKS	AREA ACRES	TOTAL AREA (ACRES)	RUNOFF COEF. "C"	INCR.	TOTAL LAT	TOTAL SEW		TIME	INTENSIT	REQUIRED C.F.S.	PIPE	SLOPE	ACT. CAP.	n	VELOC.	LENGTH (FT.)		LOSSES IN MH.	FALL IN SEWER	INVERT	ELEV. D. S.
	COLLECTOR ROAD	мн 1	MHZ		18.4	_	0.35/0.57	7.12	17.5	24.62		·	2.08	49.8	48	0.13	51.6	,013	4.1	650	2.6		0.85	615.0	614.15
	LOCAL ROAD	мнз	мн4	300 X 300	2.1	2.1	0.35	0.72		0.72	1.7	20	3.13	2.26	12	0.42	2.3		2.9	3∞	1.7		1.26	619.0	617.74
	11 +1	MH 4	MHS	350x 300	2.4	4.5	0.35	0.84	0.72	1.56	1.5	21.7	3.00	4.68	15	0.53	4.7	1/	3,8	350	1.5		1.86	617.74	615.88
	" "	MHS	MHZ	250×300	1.7	6.2	0.35	0.60	1.56	2.16	1.2	23.2	2.89	6.25	18	0.36	6.3	"	3.5	250	1.2		0.90	615.88	614.98
	COLLECTOR ROAD	MH2	MHG	250x250	1.4	76.0	0.35	0.49	26.11	26.6	1.6	42.6	2.01	53.5	48	0.14	53.5	*	4.2	400	1.6		0.56	614.15	613.59
	e e			200×250	1.1	77.1	0.35	0.40	24.6	27.0	1:0	44.2	1.97	53.3	48	0.14	53.5	"	4.2	250	1.0		0.35	613.59	613.24
	PARK	MH?	LAKE #4			77.1				27.68		45.2	1.97	54.5	48	0.14	53.5	"	4,2	200	0.7		0.28	610,28	610.00
	COLLECTOR LOAD	MHB	MAG	500×200	2.3	2,3	0.35	0.80		0.8	1.4	20	3.13	2.51	12	0.50	2.51	.013	3,2	270	1.4	Sure	1.35	618.50	617.15
	" "	MH9	MHK	200 X 230	1.1		0.35	0.37																	
				450 X 300	3./	6.5	0,20	0.62	0.80	1.79	.0.9	21.4	3.02	5.40	15	0.72	5.46	"	4.4	230	0.9		1.65	617.15	615.50
	" "	1410	M411	200 x 350	1.6	8.1	0.35			2.35	1.5	22.3	2.96	6.94	18	0.44	6.94	"	3.9	350	1.5		1.54	615,50	613.96
	<i>)</i> 1 <i>y</i>	4411	MH12	200 X 200	0.9	9.0	0.35	0.32	2.35	2.67	0.8	23.8	2.85	7.62	18	053		11	4.3	200	0.8		1.06	613.96	612,90
	* *	MHIZ		r		9.0				2.67	0.3	24.6	2.80	7.48	18	0.53	7.62		4.3	200	0.8		1.06	612.90	611.84
	PARK	MH7	LAKE #3									,													
	LOCAL KOAD	MH 20	M421	300x400	2.8	2.8	0.35	0.96		0.96	2.3	20	3.13	3.01	15.	0,23	3.08	,013	2.5	350	2.3		0.80	617.00	616.20
	* H 11	M421	MH22	450×300	3./	5.9	0.35	1.08	0.96	2.04	1.9	22.3	2.96	6.03	18	0.34	6.10	11	3.4	400	1.9		1.36	616.20	614.84
	11 11	14122	MH 19	150×300	1.0	6.9	0.35	0.36	2.04	2.40	1.1	24.2	2.83	6.79	18	0.43	6.86	"	3.9	250	1.1		1.08	614.84	613.76
	", "	MH14	MH15	12 x600, (370+400)	5.0	5.0	0.35	1.75		1.75	2.1	20	3.13	5.47		0.28	5.53	ינ	3.1	400	2.1		1.12	620,00	618.88
	<i>'</i>	M415	MH1E			5.0				1.75	0.8	22.1	2.97	5.27	18	0.28	5.53		3./	150	0.8		0.42	618.88	618.46
				600XZ70	3.7		0.35	1.30		3.05	0.6	22.9	2.91	8.88			8.88		5.0		0.6				617.16
	", "	MH17	Mu 12	350x 354	2.8				3.05	4.03	1.4.	23.5	2.87	11.6	21	0.55	11.7	,,	4.8	400	1.4		2.20	617.16	614.96
				400×300	2.8	14.3	0.35	0.96	4.03	4.99	1.5	24.9	2.78	13.9		0.38	$\overline{}$,,	4.4	400	1.5		1.52	6/4.96	613.44
	EASEMENT	MH19	#44 #4			21.2				7.39	0.8	26.4	2.69	19.9	30	0.24	20.0	"	4.0	200	0.8		0.48	613.44	612.96
		735																							
	LOCAL ROAD	N. TALES 44. Z3	M424		15.6	60.6	135/0.57	6.14	15.8	21.9	1.8	36.7	2,20	46.9	48	0.11	47.4	.613	3.7	400	1.8		0.44	613.00	612.56
	" "-CULDE SAC	MIZS	MH24	350 ×450	3.6	3.6	0.35	1.3		1.3	1.0		3.13	3.95	12	1.25	3.97	"		300			3.75	616.50	612.75
	# "···	4424	MHZ	150 x 300	1.0	65.2	0.35	0.4	22.6	23,0	1.5	38. <i>5</i>	2.15	49.5	48	0.12	49.6		3.9	350	1.5		0.42	W2.56	612.14
	11 /1	MHZT	4428	300 X 320	2.2	2.2	0.35	0.77		0.77	1.4	20	3.13	2.41	12	0.46	2.41	"	3.0	250	1.4		1.15	618.50	617.35
	11 11	14128	4429	400×320	2.9	5.1	0.35	1.03	0.77	1.80	2.2	21.4	3.02	5.43			5.53	"	3.1	400	2,2		1.12	617.35	616.23
	۱۰ ر	4429	MH30	350×300	2.4	7.5	0.35	0.84	1.80	2.64	1.4	23.6	2.87	7.57	18	0.53	7.62	"	4.3	350	1.4		1.86	616.23	64.37
		MH30	MH26	350×300	2.4	9.9	0.35	2.84	2.64	3.48	1.0	25.0	2.78	9.67	18	0.86	9.70		5,4	320	1.0		2.75	614.37	611.62
	11 11	MHZ	4431	_		75.1			26.48	26.5	0.7	40.0	2.08	55.2	48	0.15	55.4				0.7		0.27	611.50	611.23
				270 x 330	2.0		0.35	0.71	26.48	27.2	1.1	40.7	2.06	56.0	48	0.16	57.2	_	4.5		1.1		0.48	611.23	610.75
		1432				78.6				28.3	0.7	41.8	2.02			0.16				200					609.00
	PARK	MH7:	LAKE			86.1				29.67	0.7	45.2	1.92	56.9	48	2.16	57.2		4.5	200	0.7		0.32	611.32	611.0

STORM CURVE 20 MINS. ENTRY TIME VELOCITY RANGE - 2.5 to 10 F.RS MIN. PIPE SIZE -12"DIA.

PARKS & PLAYGROUNDS - 0.20 RESIDENTIAL SINGLE & SUPLEX - 0-35

ROW HOUSING - 0.50 APARTMENTS - 0.60

- 0.70 COMMERCIAL & INDUSTRIAL DENSELY BUILT, PAVED -0.95 PROJECT NAME

STORM SEWER DESIGN CHART

SUBDIVISION FRELIMINARY DESIGN

MADE BY RCS SHEET Nº 2 OF 3

CHECKED BY _____ PROJECT Nº 89-1284

DATE 3 JANUARY 1990

	SEWER LOCATION	ON			AREA		T	A	x C		RAIN	FALL IN	TENSITY	T q	f -		SEWE	R	DESIGN		25			FILE	
DWG.	STREET	FROM	ТО		AREA "A" (ACRES)	TOTAL AREA (ACRES)	RUNOFF	INCR.		TOTAL SEW		TIME		REQUIRED	PIPE	SLOPE		_		LENGTH	FLOW	LOSSES		INVERT	ELEV.
NO.		W. 7848					COEF. C"	AxC	AxC	AxC	SECT	ACCUM	IN./HR.	C.F.S.	1	-	ACT. CAR	-	F.P.S.	(Ff.)	(MIN.)	IN MH.	SEWER	u.s.	D. S.
ļ	COLLECTOR ROAD	MH 33	MH34	350×400	3.2	75.2		1.7	25.2	26.9	1.9		2.08		54		55.4	1	3.5	400	1.9				60868
	LOCAL KOAD		M434		2.4	2.4	0.35	0.8		0.8	1.6	20	3./3				2.65		3.4	330	1.6		1.85	613.50	611.65
	"	1	1437			2.2	0.35	0.8		0.8	1.8		3./3	2.37			2.38	-	3.0	330			1.49	6/100	609.51
	7	M437	MH34	300×320	2.2	4.4	0,35	0.8	0.8	1.6	1.3		2.99	4.78		0.56	4.81		3.9	300	1.3		_	609.51	
	COLLECTOR HOAD			300×250	1.7	83.7	0.35	0.6	28.7	29.3	1.4	41.9	2.03		54	0.10	61.9		3.8	330	1.4		0.33	607.83	607.50
	LOCAL KOAD	MH 39	MH40		1.6	1.6	0.35	0.6		0.6	1.2		3.13	1:73	12	0.30			2.5		1.2		0.54	610.54	610.00
	11 11	MH40	MH41	***************************************	2.0	3.6	0.35		0.6	1.3	1.3				15	0.38	3.97	"	32	250	1.3				609.05
		44 41	11438		2.0		0.35	0.7	1.3	2.0	1.8	+		5.88		0.32		1	3.3	350	1.8		1.12	609.05	607.93
	*	M438	M+142		1.9	91.2	0.35	0.7	31.3	32,0	1.5	43.3	1.97	63.2		0.11	65.0	"	4.0	350	1.5		0.39	607.50	607.11
		M442	1443		2.0	93.2	0.35	0.7	32.0	32,7	0.6		1.93	63.0	54	0.11	-	_	4.0	150	0.6		0.17	606.17	606.00
	* "	1444	14443	300×500	3.4	3.4	0.35	1.2		1,2	3.2	-	3.13			0.35	3.81	"	3./	600	3.2		2.10	614.10	612.00
	EASEMENT	44443	LAKE #2			96.6			33.9	34.5	0.8	45.4	1.89	65.2	54	0.11	65.0	"_	40	200	0.8		0.22	603.22	603.80
		ž.			74													ii.						.000	
	w "	MH47	MH46		3.5	3.5	0.35	1.2		1.2	2,2	20	3.13	3.82	15	0.36	3.86	,013	3./	400	2.2		1.44	610.44	609.00
_		MH46	MH48	250×400	2.3	5.8	0.35	0.8	1.2	2.0	2.5	22,2	2.96	5.92	18	0.32	5.92	11	<i>3</i> .3	470	2.5		1.50	609.00	607.50
	COLLECTOR ROAD	MH 49	MH48		2,3	2.3	0.35	0.8		0.8	1.2	20	3,/3	2.52	12	0.51	2.53	"	3,2	230	1.2		1.18	610,00	608.82
	11	14448	1450	380×360	3.1	11.2	0.35	1.1	2.8	3.9	1.9	24.7	2.80	10.92	24	0.24	11.0	"	3.5	400	1.9		0.96	607.50	606.54
	" "/	MHS	MHSI	240 X 380	2.1	13.3	0.35	0.7	3.9	4.6	0.5	26.8	2.67	12.3	24	0.30	12.3	17	3.9	130	0.5				606.03
	11	MHSS	1454	150X240	0.8	0.8	0.35	0.3	•	0.3	1.3	20	3.13	0.94	12	0.30	1.94	11	2.5	200	1.3		0.60	615.00	614.40
			N451		3.7	4.5	0.35	1.3	0.3	1.6	3.0		3,03	4.84		0.22	4.91	"	2.8	500	3.0		1.10	614.40	613,30
	1/	MH51	M453	300×210	1.4	19.2	0.35	0.5	6.2	6.7	1.2	27.3	2.64	17.7	24	0.62	17.7	17	5.6	400	1.2		2.48	606,08	603.60
\perp	LOCAL ROAD	M445	MH52	600 x 350	4.8	4.8	0.35	1.7		1.7	3.3			5.27	15	0.67	5.27		4.3	850	3.3		5.70	610.20	604.50
	COLLECTOR ROAD	MH52	MH53	200/400	1.8	6.6	0.35	0.6	1.7	2.3	1.8	23.3	2.89	6.65	18	041	6.7	"	3.8	400	1.8		1.64	604.50	602.86
	PARK	1453	#Z			25.8	0.35	į.		9.0	0.4	28.5	2.58	23.2	30	0.33	23.5	А	4.7	120	0.4		0.40	60286	602.46
_		-				1 to 1					×			*						58.1					
	COLLECTOR KOAD	M457	M452		1.5	1.5	0.35	0.5		0.5	2:3	20	3.13	1.68	12	0.30	1.94	.013	2.5	350	2.3				94. 4 A
	LOCAL ROAD	MH52	M43			1.5	0.35		0.5	0.5	1,3	22.3	3./3	1.68	12	0.30	1.94	**	2.5	200	/.3				
														-											
					8.43																				
		Ī		747																					
																						-			

MIN. PIPE SIZE -12"DIA.

 PARKS & PLAYGROUNDS - 0.20
RESIDENTIAL SINGLE & JUPLEX - 0.35

ROW HOUSING - 0.50 APARTMENTS - 0.60

COMMERCIAL & INDUSTRIAL - 0.70
DENSELY BUILT, PAVED - 0.95

PROJECT NAME

STORM SEWER DESIGN CHART

PRELIMINARY DESIGN CHECKED BY PROJECT NO 89-1284

DATE 3 JANUARY 1990

MIN.	PIPE SIZE 12 DIX				DENSEL	BUILT,	PAVED	- () · 95											DATE	3.	ANUA	12Y 14	10	
	SEWER LOCATI	ON			AREA			.Α	x C		RAINF	ALL IN	TENSITY	4		, Jack	SEWE		DESIGN					FILE	n a
DWG. NO.	STREET	FROM	ТО	LAND USE & REMARKS	AREA (ACRES)	TOTAL AREA (ACRES)	RUNOFF COEF. "C"	INCR.	TOTAL LAT	TOTAL SEW	FLOW SECT.	TIME	INTENSITY IN./HR.	REQUIRED C.F.S.	PIPE SIZE	SLOPE	ACT. CAP.	22	VELOC.	LENGTH	FLOW TIME (MIN.)	LOSSES IN MH.	FALL IN SEWER	INVERT	ELEV. D. S.
	LOCAL ROAD	1416	MHG	330×300	2.3		0.35			0.8	1.5	_	3.13	2.49	15	0.23	3,08	.013	2.5	230	1.5	1	0.53	611.53	611.00
	1 11			350×400	3,2		0.35	1.1	0.8	1.9	2.1	·	3.01	5.72	-	7	5.73	"	_	400				611.00	
	11			300 X 260	1.8		0.35	0.6	1.9	2.5			2.86		21	0.21	7.23	"	-	350				609:80	
	at pt			430×300	3.0		0.35	1.0	2.5	3.5				9.62				"		550				609.0G	
	COLLECTOR KOAD						0.35		3.5	4.4	29	28.5	2.58				11.5	11		500			0.70	608.01	607.31
	4 "		1	250x200		14.1	0.35	0.4	4.4	4.8	2.Z	3/4	2.43	11.7	27	0.15	11.9	**	3.0	400	22		060	607.31	606.71
											1														
	LOCAL ROAD	4472	MH73	550x400	5.0	5.0	0.35	1.8		1.8	1.1	20	3.13	5.52	15	0.75	5.57						2.25	614.00	611.75
	COLLECTOR ROAD	MH 73	MH71			5.0	2			1.8	1.1	21.1	3.04	5.47	15	0.75	5.57	"	4.5	300	1.1		2.25	611.75	609.50
	LOCAL ROAD	4467	4468	350x 330	2.7	2.7	0.35	0.9		0.9	1.9	20	3.13	2.90	15	0.23	3.08			280			0.4	62,00	611.36
	4 "	4468	HHLG	250×300	1.7			0.6	0.9	1.5			2.98		15	0.49	4.50	11	3.6	250	1.2		1.23	611.36	610.13
	"	4469	MHD	250 X 300	1.7	6.1	0.35	0.6	1.5	2.1	1.2	23.1	2,90	609	18	0.34	6.10	"		250				610.13	
	, "	44 70	1471	½x480x350	1.9	8.0	0.35	0.7	2.1	2.8	1.6	24.3	2.82	7.90	21	0.26	8.05	"	<i>3</i> , 3	320	1.6			609.28	
	COLLECTOR KOAD	MH71	MHCL			13.0				4.6	0.6	25.9	2.72	12.5	24	0.31	12.5	u	4.0	150	0.6		0.47	608.45	607.98
																								L	
_																									
-																		-							
-																									al .
\rightarrow																			-						
-+																									
\dashv																									
																									
																								-	
	-31																								
			-+		-																				
-			\rightarrow															\dashv							
			79,0															\rightarrow							
]						

APPENDIX

HGS REPORT
SOUTHWOOD LAKES DEVELOPMENT

SOUTHWOOD LAKES DEVELOPMENT

HYDRAULIC DESIGN REPORT

HANNA, GHOBRIAL & ASSOCIATES LTD. CONSULTING ENGINEERS

939 Goyeau St. Windsor, Ontario Canada N9A 1H7 (519) 253-1188 Fax: (519) 253-1242

June 6, 1990

Our File No. 89-1284

Mr. G.T. Harding, B.S.C.E., P.Eng. Commissioner of Works P.O. Box 1607 Windsor, Ontario N9A 6S1

Attention: Ms. L.G. Carkner, P.Eng.

Re: HYDRAULIC DESIGN

REPORT FOR SOUTHWOOD LAKES DEVELOPMENT

Dear Sirs:

On behalf of the Mady Development Corporation, we are pleased to submit eight copies of our final report for the Southwood Lakes Subdivision.

We understand that copies will be forwarded by you to the Essex Region Conservation Authority and MacLaren Engineers.

The report addresses storage/retention requirements and recommends a stormwater management scheme in association with the development of these lands. The comments received at the review meeting of 20 April 1990 have been considered in this final report.

Our report has been prepared in co-operation with Lakescape International Ltd., particularly with respect to lake level fluctuations and location of storm sewer inlets to the lakes.

Yours truly,

HANNA CHOBRIAL & ASSOCIATES

LTD

Richard C. Spencer, P.Eng.

Principal

cc+encl: Dan McCulloch

TABLE OF CONTENTS

l.	Introduction	1
2.	Background	_1
3 ,	Methodology/Criteria	_2
4 .	Pre and Post Development Conditions	3
5 .	Stormwater Management Scheme	5
6.	Project Phasing	
7	Recommendations	6

LIST OF FIGURES, TABLES AND APPENDICES

FIGURES

Figure 1 Southwood Lakes Development Plan
Figure 2 Storm Sewer Drainage Area Plan
Figure 3 Hydraulic Configuration of Lakes
Figure 4 Phasing Plan
Figure 5 Suggested Weir Concept

TABLES

Table 1 Summary of HEC 1 Results

Table 2 Street Storage Summary

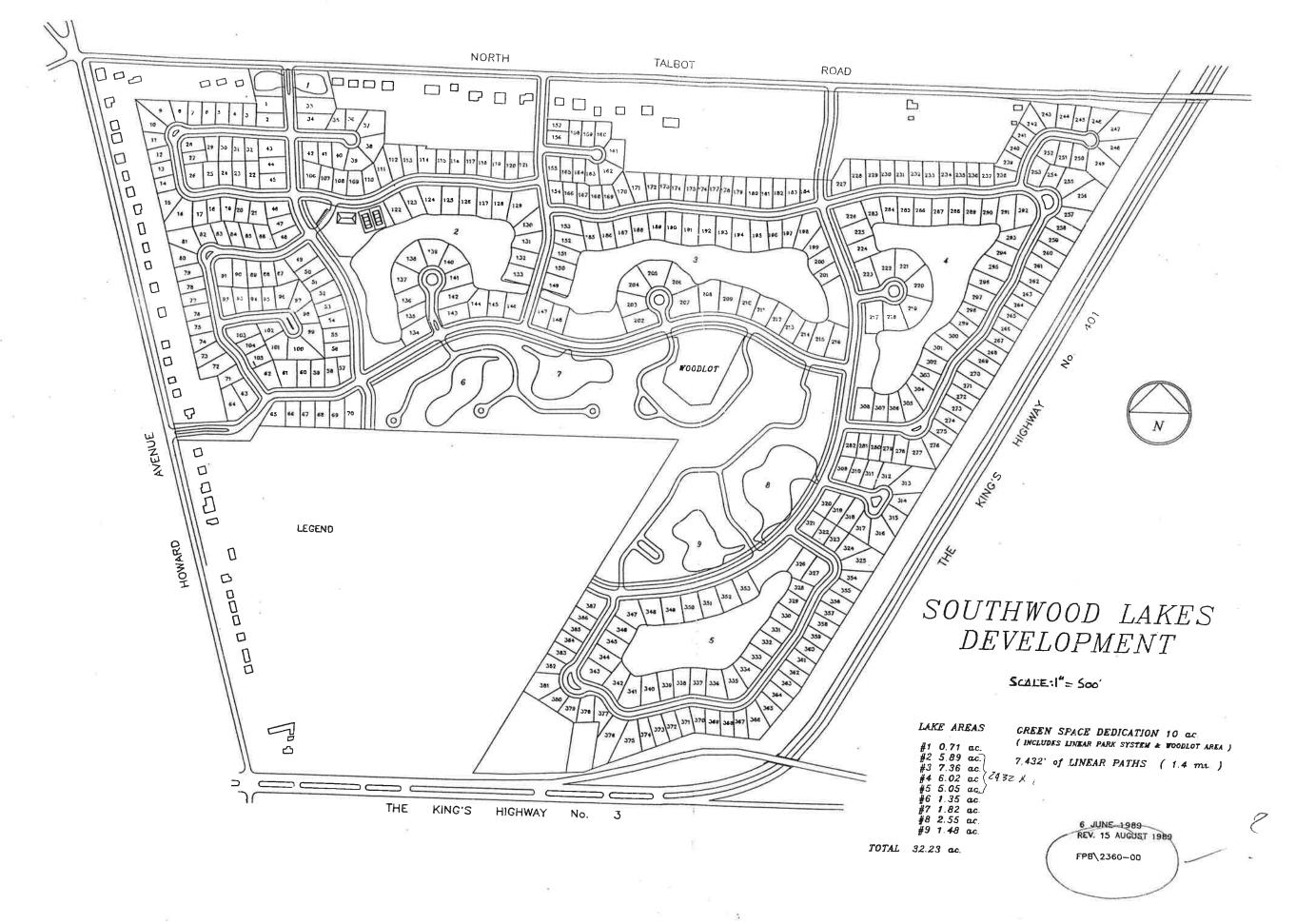
APPENDICES

Appendix A Preliminary Storm Sewer Design and Layout

Appendix B Hydrological Summary of Watershed

Parameters

1. INTRODUCTION


In the Spring of 1989, the Mady Development Corporation proceeded with the required planning and engineering for the development of a 240 acre parcel of land located in the South Roseland area of the City of Windsor. The area is bounded by Howard Avenue on the west, North Talbot Road on the north, Highway No. 401 on the east and Highway No. 3 on the south.

The proposal evolved into an estate residential subdivision including four permanent lakes over 24 acres in total area. The project, as shown on Figure 1, is now known as the Southwood Lakes Residential Subdivision.

Because of the significant area of these lakes and the recognized need for a central storm detention/retention facility to serve the South Roseland area, the concept of using these "wet ponds" as stormwater management retention facilities was accepted by the City of Windsor. The recommendations of City Administration for approval of this development therefore included the requirement that a hydraulic design report, addressing not only storage/retention requirements but environmental design considerations, be submitted.

2. BACKGROUND

On 30 June 1989, MacLaren Engineers submitted their report entitled "Stormwater Management Alternatives for the Turkey Creek Watershed" to the Essex Region Conservation Authority. The report describes alternative stormwater management strategies for controlling runoff from proposed development in the watershed. These measures would be required if channel improvements to handle the future 1:100 year flood are not carried out for the major watercourses. Design criteria and methodologies are also discussed and can be applied to this proposed development.

In negotiations with the City of Windsor and discussions with the Authority, it was decided that the lakes should provide sufficient storage for the lands north of North Talbot Road up to Highway 401 from Howard Avenue to east of the Sixth Concession Road at Highway 401. This area comprises 167 acres and generally falls southerly and westerly.

Since the topography is flat in this area, flood routing of the 1:100 year storm runoff from the lands north of North Talbot Road after development to the lakes will not be practical. Storage can be effected by making use of the available volume created in the low points along the roadways, i.e. adjacent to the catchbasins.

Therefore, the minor drainage system should be able to accommodate the 1:5 year storm and direct the runoff to the lakes via gravity. The lake levels should be established low enough to ensure that the hydraulic gradient is not higher than existing ground for the minor storm event.

3. METHODOLOGY/CRITERIA

The U.S. Army Corps of Engineering package on watershed simulation, HEC 1, was used to model the hydrologic processes of the watershed.

The hydrologic parameters for land use, CN for existing and future conditions, were obtained from Table 1 of the Stormwater Management Alternatives for the Turkey Creek Watershed by MacLaren Engineers (June 1989). Topographical maps were utilized to estimate runoff, travel length and slope for existing conditions. Developed parameters were estimated based on the preliminary storm sewer design (Charts and drawing in Appendix A).

The Soil Conservation Service (SCS) approaches were used to estimate the runoff hydrograph for the design storms given in Table 2 of the MacLaren Report (June 1989) for 5 and 100 year frequencies and 6 hours duration.

4. PRE AND POST DEVELOPMENT CONDITIONS

In simulating pre and post development conditions, individual sub-areas were considered based on existing topographical conditions.

As shown on Figure 2, the lands considered to be served by the lakes are tributary to the Wolfe and Cahill Drains. Of the total 524 acres of land bounded by Howard Avenue, Highway No. 3 and Highway No. 401, 381 acres drain to the Cahill Drain. Only 60 acres of the Southwood Lakes Subdivision lands are tributary to the Wolfe Drain.

For the 5 year developed condition, it is assumed that the 83 acre parcel of land in the southwest corner of this area will not outlet to Lake #4 because of the fall of the land but will drain directly to the Wolfe Drain independent of the lake system. As noted on Table 1, the 5 and 100 year pre-development flows from these two parcels of land (143 acres total) are 13 cfs and 52 cfs respectively. Considering that the outflow from Lake #4 for the 60 acres of the Southwood Lakes Subdivision lands is restricted to 1 cfs via pumping, the post-development flows for the 83 acre parcel should be restricted to 12 cfs and 51 cfs for the 5 and 100 year conditions respectively.

The immediate areas surrounding the individual lakes are assumed to drain overland to their respective lake for the 100 year developed condition. As shown on Table 2, the streets provide storage capacity up to 15.17 acrefeet, which is more than sufficient to handle the excess from the 1:100 year storm peak value. In the event of no outflow from the lakes into the receiving streams (i.e. power failure or mechanical malfunction of the pumps, etc.), it is determined that for every inch of runoff on the drainage area, the rise in the level of the lakes will be 8.26 inches or, if street storage is considered, 5.09 inches.

Therefore, for the full duration of the 100 year storm, the total rise in the lakes will not exceed 31 inches (no street storage considered and 100 per cent of the 1:100 year rainfall entering the lakes). This level will provide an average freeboard of 4 feet to the finished grade of lands abutting the proposed lakes.

STORM SEWER DRAINAGE AREA

FIGURE 2

TABLE 1

					L AREA)
OVERF		0.03	0000	0000	EACH LAKE (- 1/3 OF TOTAL AREA) 0.3 6.09 0 0.4 617.44 0 0.2 615.53 0 0.2 610.9
COND. ELEY (FT)	281 E	610.04 618.03 616.01 611.51	609.92 617.87 615.78 611.34	609.99 617.87 615.78 611.38	609 617.44 615.53 610.9
DEV. 100 YRS (CFS)		252.4	- 0.00 - 0.00	0-2-	
OVERF		0.03	0000	000	SUBROUND I NG
COND. ELEV (FT)		610.03 617.73 615.24 615.24	609.66 617.32 615.52 611.12	609.71 617.32 615.52 611.15	INEDIATE AREA
DEV. 5 YRS (CFS)	5.	\$1 - S	- 0000 - 0000 - 0000	0 m n 0	FROM IMPEDI
ALENGTH (FT)	t.	EURA ERES	0.12 0.12 0.12 0.12 0.12 0.12	51.00 51.00 51.00 51.00 51.00	0.12 0.12 0.12 0.12 0.12
SIR ELEV I		609 617 618 610.5 609 617 615	608.25 616.5 615.5 610.25 616.5 616.5 610.25 900.75	608.25 616.5 610.25 608.25 616.5 616.5	A PLUS OV 608.25 616.5 615 610.≥5
MAX.ELEV WEIR ELEV ULENGTH (FT) (FT) (FT)		610 618 616 511.5 610 618 618	610 618 611.5 610 618 618 611.5 CAHZLL OR W	610 618 616 610 610 610 610 610	DESIGN STORM PLUS DVERLAND 610 608.25 0.12 618 616.5 0.12 611.5 610.25 0.12
COND. NU 100 YRS (CFS)	8282 3824		14		2 YR.
EX. 5 YRS 1 (CFS)	0.094 LOJ6 4 0.09 57.6 4 0.06 38.4 7 0.07 44.0 13 0.25-16.0 13 0.168-107 6 0.13-93 12 0.179-115 21		иЕ DEVELOPИЕНТ		1S LIMITED BY THE 0.06 0.06 0.06 0.06
DESICA AREA	0.094 LOVE 38.4 0.00 3.4.6 0.00 38.4 0.00 38.4 0.00 44.0 0.00 44.0 0.00 44.0 0.00 4.0 0.13 - 9.3 0.	20.09 0.09 0.00 0.07 0.025 0.13 0.13 0.13	0.094 0.099 0.06 0.075 0.158 0.13 0.179	0.09 0.09 0.00 0.07 0.02 0.02 0.02 0.03	
V 1 03US	C S C C C C C C C C	25.52 25.53	8 GRILL S.S.S.S.	3000 3000 8888 FFFF	THE SYSTEM S .

TABLE 2
STREET STORAGE SUMMARY

Average street storage capacity = 28 square feet/foot

	AREA C3	AREA C2	AREA Cl	AREA W
STREET LENGTH (feet)	8833	5490	5197	4073 Z=19.
STORAGE (acre- feet)	5.68		3.34 546678cf × 1	2.62 prosper 2.65 3.160
LAKE STORAGE (acre- feet)	5.89	7.36 19.27 Surft = 839401	6.02, 5 244, 360000 - 26fc	5.05 to pu
TOTAL STORAGE (acre- feet)	11.57	10.89 31.85A. Pt = 1,387,386	9.36 , -f = 1 , seco (recef ,	7.67
Total av	vailable s vailable l	treet storage = 15 ake storage = 24	.17 acre-feet .32 acre-feet	39.5 Ac. ft
Total a	rea availa evelopable	ble for storage = :	39.49 acres 201.0 acres	9

18st - Lo/60 39.5 = 1.23'

Orifice detention plates will be installed in the street catchbasins to effect this storage requirement. It is also suggested by the environmental design consultant, Lakescape International Ltd., that the catchbasins have deeper sumps in order to provide greater sedimentation of silts in the catchbasins and reduce inflow thereof into the lakes.

The lake levels are established to accommodate gravity flow from the lands north of North Talbot Road for the 5 year developed condition. Since all outlets from the sewer system into the lakes will be submerged, the sewers are sized in concert with the maximum lake level setting to provide a hydraulic gradient which will not exceed original ground elevations throughout the sewer system. During the condition of street storage, the hydraulic gradient for the sewer system will not increase beyond that for the 5 year condition since the increase in hydraulic head (6 inches at the catchbasins) will be negated by the rise in the outlet lake level as shown on Table 1.

jee notes

Outflow from lake to lake is accomplished through the use of weirs, limiting the maximum lake level rise to 12 inches in every lake for the 1:100 year event. Lake levels are set in relation to the natural fall of the land (0.20%) from east to west and discharge from one to another occurs by gravity.

Because of the shallow depth of the Cahill Drain system adjacent to Lake #2, it will be necessary to pump the outflow from this lowest lake to the ditch on the east side of Howard Avenue, which drains to the Cahill Drain to the north thereof. The pumping rate has been reduced to a rate significantly less than pre-development conditions, thereby effecting a cost savings for the pumping station, taking advantage of the significant available storage and reducing runoff to the receiving watercourses.

The Hydrological Summary of Watershed Parameters for existing and developed conditions is described in Appendix B.

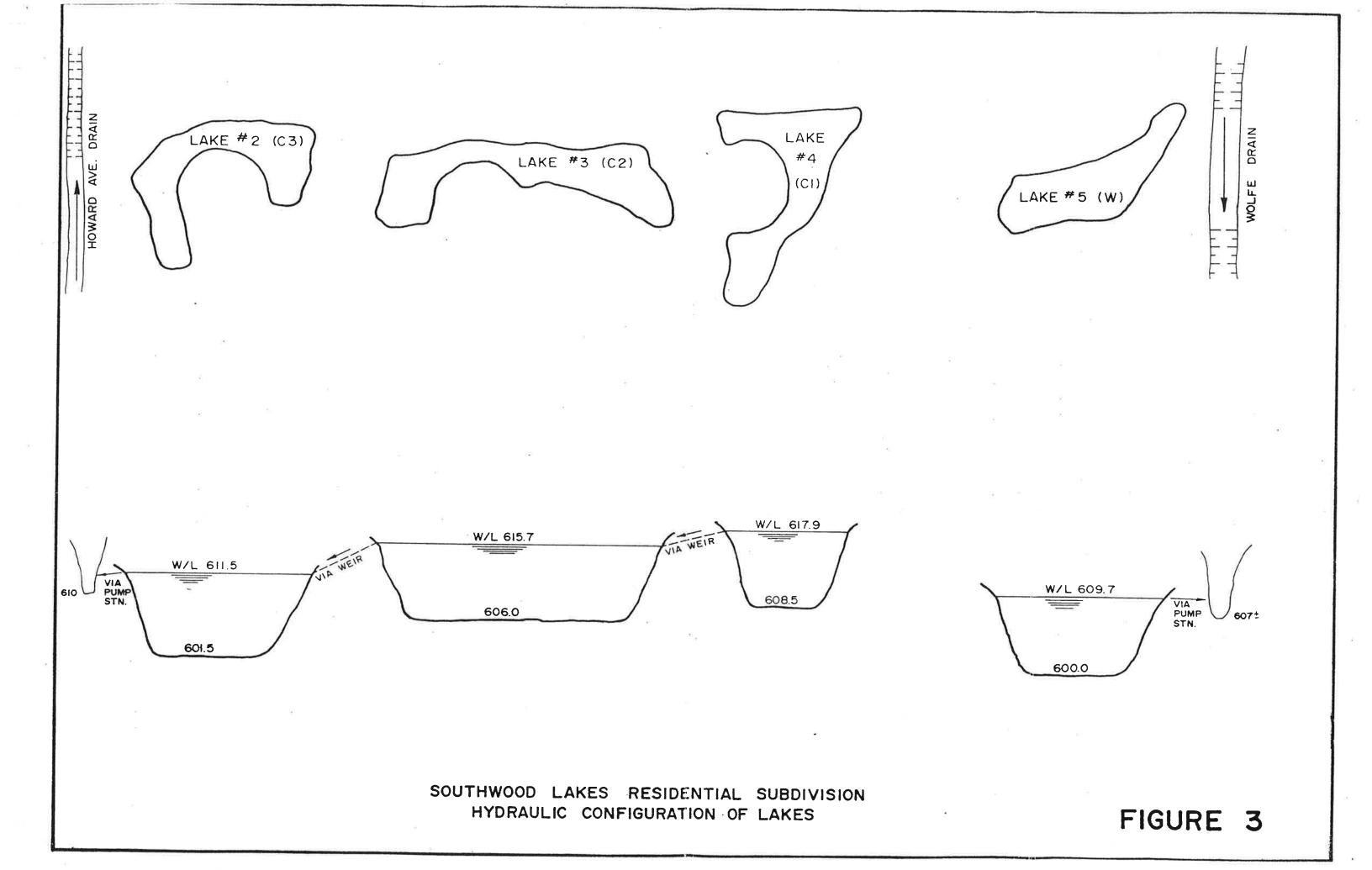
5. STORMWATER MANAGEMENT SCHEME

As noted, the preliminary storm sewer design charts and sewer layout drawing for the Subdivision is provided in Appendix A.

In dimensioning the lake weirs, minimum openings were chosen for economy and to keep the lake level fluctuations within the limits recommended by the environmental design consultant, Lakescape International Ltd.

Figure 3 and Table 1 describe the lake configurations and the HEC 1 results respectively. As noted in Table 1, the maximum outflow from the lakes for either the 5 year or 100 year storm event is 1.0 cfs, as little as 2.5% of the 100 year undeveloped flow. From lake to lake this can be accomplished with small diameter piping. At the outlets from Lake #2 and Lake #5 into the Cahill and Wolfe Drains respectively, a small three phase submersible pumping station can easily handle the outflow.

3 = (2)


The use of a pump at the outlets will permit draining of the lakes for maintenance purposes. The upstream interconnecting lakes can be drained one at a time to the lower lakes by temporary pumping.

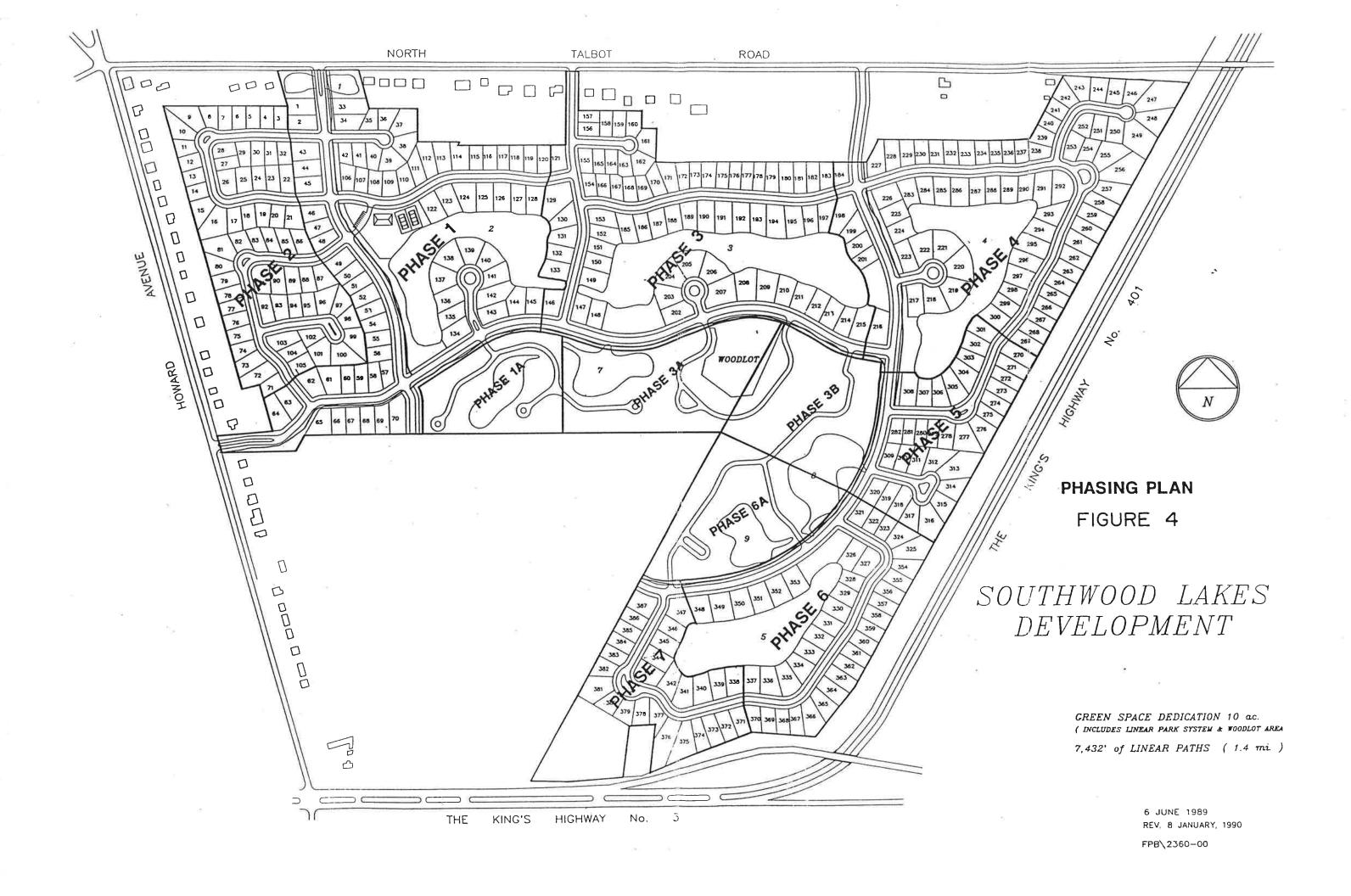
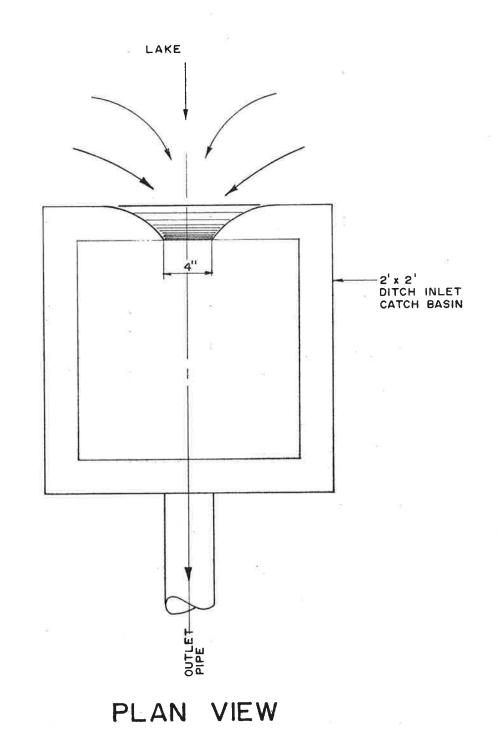

6. PROJECT PHASING

Figure 4 describes the phasing plan of the Mady Development Corporation for the Southwood Lakes Residential Subdivision.

As shown on Figure 2, the development of the sub-drainage areas north of North Talbot Road will be dependent on the phasing of Lakes 2,3 and 4 which are included in Phases 1,3 and 4 of the Subdivision. A ten year development plan for the subdivision is envisaged by Mady.

As can also be seen on Figure 4, the phases involving the construction of a lake must precede the development of the other phases within the drainage area for that particular lake as described on Figure 2.

7. RECOMMENDATIONS


As described in Table 1, all weirs are proposed to be 4 inches wide, effective width. Figure 5 shows views of the suggested weir concept. Each weir should include a bar screen for cleaning purposes. A standard 2'x2' catchbasin with an adequately sized outlet pipe (12 inch diameter at 0.36%) to discharge outflow from lake to lake is recommended. Proper edge rounding is also denoted for the weir in Figure 5.

2 9-219cfs

Preliminary sizing of the pumping stations at the outlets for Lake #2 and Lake #5 suggests that a three phase Flygt C3085 pump or equal is sufficient for discharging the 1.0 cfs. outflow. A gravity overflow in the case of power failure or lake levels higher than anticipated is not recommended because of high water levels in the receiving watercourses i.e. the Cahill and Wolfe Drains.

Proper grading of the subdivision along with the contours of the lakes is essential to ensure that adequate street storage is provided and that the lakes function as proposed. Deeper sumps for sedimentation control and orifice plate installation will be required features of the roadway catchbasins. Side slopes of the lakes will be determined considering the environmental characteristics of the lake.

Cost sharing for the construction of the trunk sewers to serve the lands north of North Talbot Road must also be determined at the final design stage of this project.

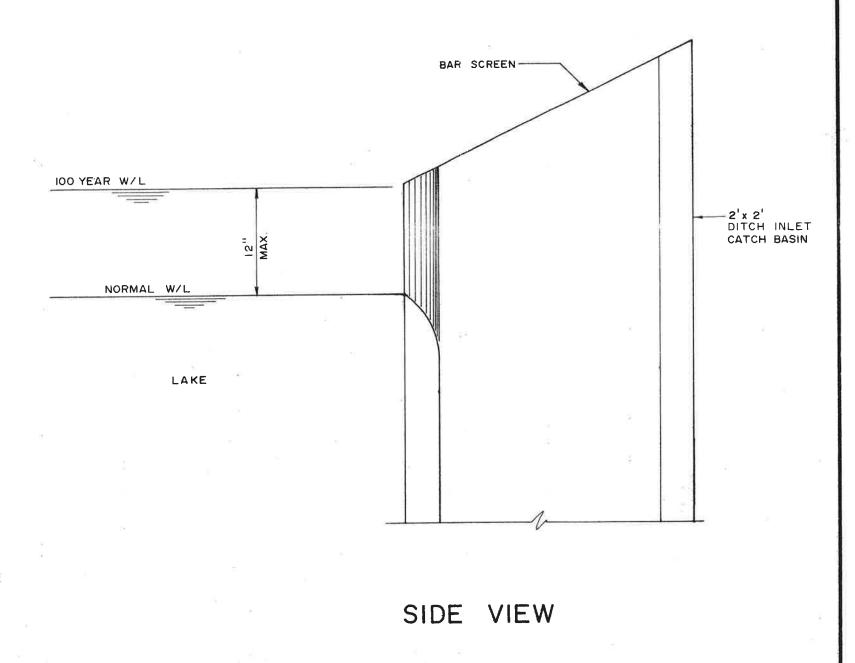
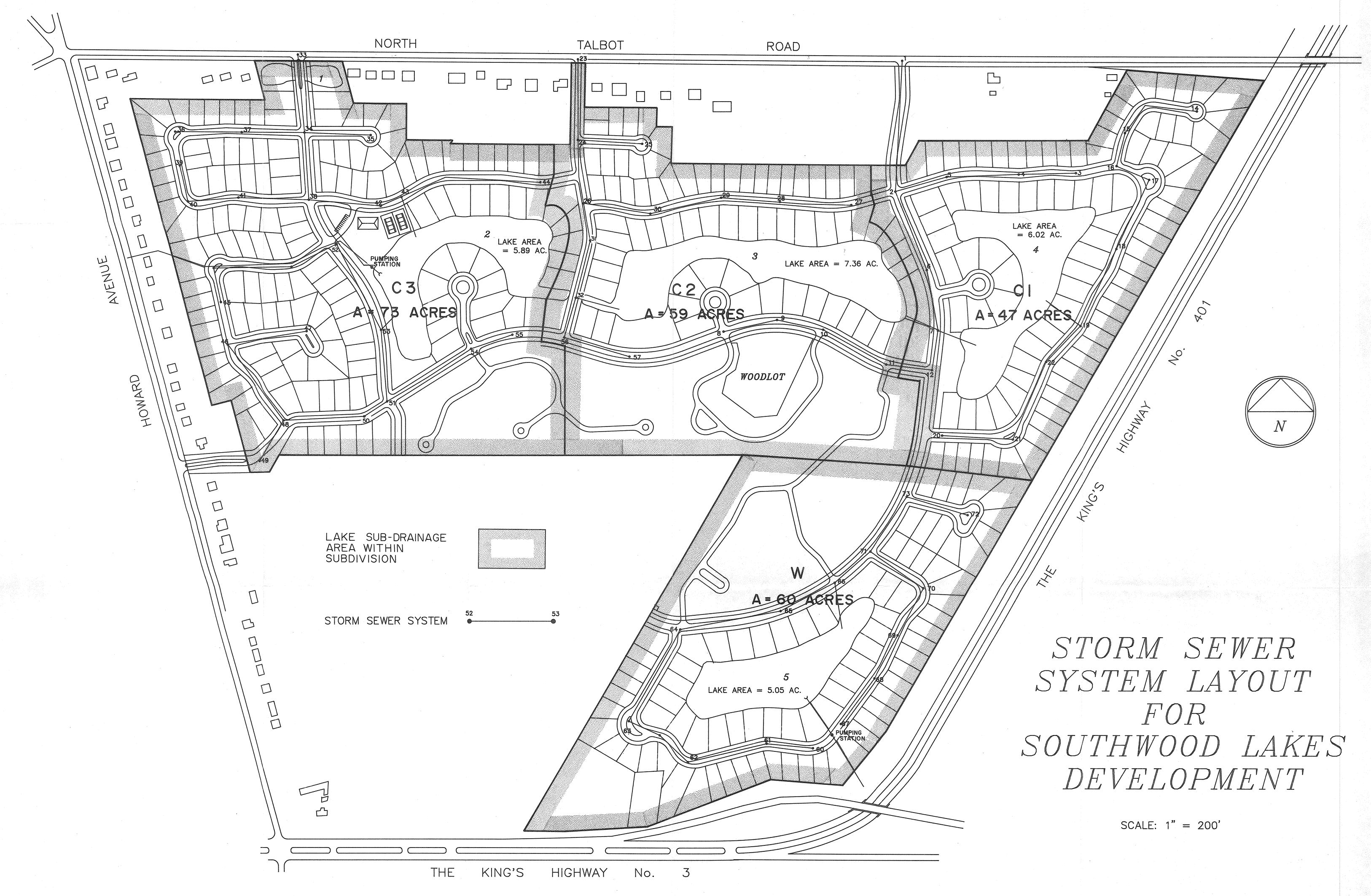



FIGURE 5

APPENDIX A

STORM CURVE ENTRY TIME _20_ MINS. VELOCITY RANGE - 2.5 to 10 F.PS

MIN. PIPE SIZE -12"DIA.

PARKS & PLAYGROUNDS

RESIDENTIAL SINGLE JUPLEX - 0.35

APARTMENTS

ROW HOUSING - C·50

COMMERCIAL & INDUSTRIAL DENSELY BUILT, PAVED

- 0.70 - 0.95

- 0.60

PROJECT NAME

STORM SEWER DESIGN CHART

SOUTHWOOD LAKES SUBDIVISION FRELIMINARY DESIGN

MADE BY RCS SHEET Nº 1 OF 3 CHECKED BY ______ PROJECT Nº 89-1284

DATE 3 JANUARY 1990

	SEWER LOCATIO				Α	x C		RAINF	ALL IN	TENSITY	Q			SEWE	R (DESIGN				PRO	FILE				
DWG.	STREET	FROM	то	LAND USE & REMARKS	AREA A" (ACRES)	TOTAL AREA (ACRES)	RUNOFF COEF. "C"	INCR.	TOTAL LAT	TOTAL SEW	FLOW SECT.	TIME ACCUM.	INTENSITY IN./HR.	REQUIRED C.F.S.	PIPE SIZE	SLOPE	ACT. CAP. C.E.S.	n	VELOC. F.P.S.	LENGTH (FT.)	FLOW TIME (MIN.)	Losses In Mh.	FALL IN SEWER	INVERT	ELEV. D. S.
	COLLECTOR ROAD	мн 1	MHZ		18.4	68.4	0.35	6.44	17.5	23.94	2.6	40	2.08	49.8	48	0.13	51.6	.013	4.1	650	2.6		0.85	615.0	614.15
	7	-	мн4	_	2.1	2.1	0.35	0.72		0.72	1.7	20	3.13	2.26	12	0.42	2.3	"	2.9	3∞	1.7		1.26	619.0	617.74
	" "		MHS		2.4	4.5	0.35	0.84	0.72	1.56	1.5	21.7	3,00	4.68	15	0.53	4.7	"/	3.8	350	1.5		1.86	617.74	615.88
	n '*		MHZ		1.7	6.2	0.35	0.60	1.56	2.16	1.2	23.2	2.89	6.25	18	0.36	6.3	"	3.5	250	1.2		0.90	615.88	614.98
	COLLECTOR ROAD		1		1.4	76.0	0.35	0.49	26.11	26.6	1.6	42.6	2.01	53.5	48	0.14	53.5	*	4.2	400	1.6		0.56	614.15	613.59
				200×250	1.1	77.1	0.35	0.40	24.6	27.0	1,0	44.2	1.97	53.3	48	0.14	53.5	"	4.2	250	1.0		0.35	613.59	613.24
	PARK		LAKE #4	1		77.1				27.0		45.Z	1.97	53.3	48	0.14	53.5	"	4,2	200	0.7		0.28	610,28	610.00
	COLLECTOR HOAD	MHR	MAG	500 X 200	2.3	2.3	0.35	0.80		0.8	1.4	20	3.13	2.51	12	0.50	2.51	.013	3.2	270	1.4		1.35	618.50	617.15
				200 × 230			0.35	0.37																	14
				450 x 300	3./	6.5	0,20	0.62	0.80	1.79	.0.9	21.4	3.02	5.40	15	0.72	5:46	"	4.4	230	0.9		1.65	617.15	615.50
	" "	MH 10	MHII	200 × 350	1.6	8.1	0.35	0,56	1.79	2.35	1.5	22.3	2.96	6.94	18	0.44	6.94	"	3.9	350	1.5		1.54	615,50	613.96
	/1 4	1411	MH12	200×200	0.9	9.0	0.35	0.32	2.35	2.67	0.8	23.8	2.85	7.62	18	053	7.62	11	4.3	200	0.8		1.06	613.96	612,90
	p +	MHIZ	MHT	-	_	9.0				2.67	0.3	24.6	2.80	7.48	18	0.53	7.62		4.3	200	0.8		1.06	612.90	611.84
	PARK	MH7	LAKE #3																						
	LOCAL KOAD	MHZC	MH21	300x400	2.8	2.8	0.35	0.96		0.96	2.3	20	3.13	3.01	15.	0.23	3.08	,013	2.5	350	2.3		0.80	617.00	616.20
	* H - 11	M421	MH22	450×300	3./	5.9	0.35	1.08	0.96	2.04	1.9	22.3	2.96	6.03	18	0.34	6.10	11	3.4	400	1.9	= 1	1.36	616.20	614.84
	11 21	14/22	MH 19	150×300	1.0	6.9	0.35	0.36	2.04	2.40	1.1	24.2	2.83	6.79	18	0.43	6.86	"	3.9	250	1.1		1.08	614.84	613.76
	"	MH14	MH15	1/2 x600, (370+400	5.0	5.0	0.35	1.75		1.75	2.1	20	3.13	5.47	18	0.28	5.53	,,	3.1	400	2.1		1.12	620,0€	6/8.88
	<i>j</i>) •	M415	MHIE	_		5.0				1.75	0.8	22.1	2.97	5.27	18	0.28	5.53	,,	3./	150	0.8		0.42	618.88	618.46
۰	1/ "	MU16	MHIT	600XZ70	3.7	87	0.35	1.30	1.75	3.05	0.6	22.9	2.91	8.88	18	0.72	8.88		5.0	180	0.6		1.30	618.46	617.16
	20)		Mu12		2.8	11.5	0.35	0.98	3.05	4.03	1.4	23.5	2.87	11.6	21	0.55	11.7		4.8	400	1.4		2.20	617.16	614.96
				400×300	2.8	14.3	0.35	0.96	4.03	4.99	1.5	24.9	2.78	13.9	24	0.38	13.9	,,,	4.4	400	1.5		1.52	6/4.96	6/3.44
	EASEMENT	MH19	HAKE #4	_		21.2				7.39	0.8	26.4	2.69	19.9	30	0.24	20.0	"	4.0	200	0.8		0.48	613.44	612.96
		2								E															
	LOCAL ROAD	V TALBUT 44.23	M424	*	15.6	60.6	0.35	5.5	15.8	21.3	1.8	36.7	2,20	46.9	48	0.11	47.4	.613		400					612.56
	" - CULDE SAC	MUZS	MHZ4	350 ×450			0.35	1.3		1.3	1.0		3.13	3.95	12	1.25	3.97	"		300			3.75	616.50	612.75
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4424	M426	150 x 300	1.0	65.2	0.35	0.4	22.6	23,0	1.5	3 <i>8.5</i>	2.15	49.5	48	0.12	49.6	17		350	1.5		0.42	62.56	612.14
	11 /1	MHZT	MH 28	300 X 320	2,2	2.2	0.35	0.77		0.77	1.4	20	3.13	2.41	12	0.46	2.41	"	3.0	250	1.4		1.15	618.50	617.35
	// *1	4428	4429	400×320	2.9	5.1	0.35	1.03	0.77	1.80	2,2	21.4	3.02	5.43	18	0.28	5.53	11	3.1	400	2,2		1.12	617.35	616.23
	97 P	4429	MH30	350×300	2.4	7.5	0.35	0.84	1.80	2.64	1.4	23.6	2.87	7.57	18	0.53	7.62	"	4.3	350	1.4		1.86	616.23	64.37
					,			0.84	2.64	<i>3.48</i>	1.0	25.0	2.78	9.67	18	0.86	9.70	,	5.4	320	1.0		2.75	614.37	611.62
	,, ,,		MH31		(0.7)	75.1			26.48		0.7	40.0	2.08	55.2	48	0.15	55.4	11	4.4	180	0.7		0.27	611.50	611.23
				. 270 x 330	2.0	77.1	0.35	0.71	26.48	27.2	1.1	40.7	2.06	56.0	48	0.16	57.2	"	4.5	300	1.1		0.48	611.23	610.75
			LAKE =3			78.6		-		-				56.0			57.2	//		200					609.00
			LAKE #4			86.1				29.67		45.2	1.92	56.9	48	0.16	57.2	,,	4.5	200	0.7		0.32	611.32	611.0

STORM CURVE ENTRY TIME 20 MINS. VELOCITY RANGE - 2-5 to 10 F.RS PARKS & PLAYGROUNDS - 0.20

RESIDENTIAL SINGLE & SUPLEX - 0-35 ROW HOUSING

APARTMENTS

COMMERCIAL & INDUSTRIAL DENSELY BUILT, PAVED

PROJECT NAME

STORM SEWER DESIGN CHART

SOUTHWOOD LAKES SUBDIVISION FRELIMINARY DESIGN

RCS SHEET Nº 2 OF 3 MADE BY CHECKED BY _____ PROJECT Nº 89-1284

DATE 3 JANUARY 1990

	SEWER LOCATIO	NC			AREA			A	хC	0	RAINF	ALL IN	TENSITY	Q			SEWE	R (DESIGN	15		PRO	FILE	
DWG.	STREET	FROM	то	LAND USE & REMARKS	AREA "A" (ACRES)	TOTAL AREA (ACRES)	RUNOFF COEF. "C"	INCR.	TOTAL LAT.	TOTAL SEW		TIME	INTENSITY IN./HR.	REQUIRED C.F.S.	PIPE	SLOPE	ACT. CAR	72	VELOC.	LENGTH (FT.)	FLOW TIME (MIN.)	LOSSES FALL IN IN MH. SEWER	INVERT	ELEV. D. S.
	COLLECTOR ROAD	M. TALS MH 33	11120		3.2	75.2	0.35	1.1	25.2	26.3	1.9	40	208	54.7	54	0.08		.013	3.5		1.9	the same of the sa	609.00	608.68
	LOCAL ROAD	MH 35		20 // 0	2.4	2.4	0.35	0.8		0.8	1.6	20	3./3	2.64	12	0.56		"	3.4	330	1.6		613.50	
	" "	1	1437	356×270	2.2	2.2	0.35	0.8		0.8	1.8	20	3.13	2.37	12	6.45	2.38	"	3.0	330		1.49	61100	609.51
	<i>j</i> 1 **			300×320	2.2	4.4	0.35		0.8	1.6	1.3	21.8	2.99	4.78	15	0.56		"	3.9	300			609.51	
	COLLECTOR ROAD			300×250	1.7	83.7	0.35	0.6	28.7	29.3	1.4	41.9	2.03	59.6	54	0.10	61.9	"	3.8			0.33	607.83	607.50
	LOCAL ROAD		MH40		1.6	1.6	0.35	. ,		0.6	1.2	20	3.13	1:73	12	0.30	1.94	"	2.5	180			610.54	
	" "	MH 40			2.0	3.6	0,35	-	0.6	1.3	13	21.2	3.03	3.94	15	0.38	3.97	"	3.2	250	1.3	0.95	610.00	609.05
	,, ,,	1.77	11438		2.0	5.6	0	0.7	1.3	2.0	1.8	22,5	2.94	5.88	18	0.32	5.92	"	3.3	350	1.8	1.12	609.05	607.93
	., .,		MH42		1.9	91.2	0.35	0.7	31.3	32.0	1.5	43.3	1.97	63.2	54	0.11	65.0	"	4.0	350		0.39	607.50	607.11
	н у		11443		2.0	93,2	0.35	0.7	32.0	32.7	0.6	44.8	1.93	63.0	54	0.11	65.0	"	4.0	150	0.6	0.17	606.17	606.00
	x "	1		300×500	3.4	3.4	0.35	1.2		1.2	3.2	20	3.13	3.77	15	0.35	3.81	"	3.1	600	3.2	2.10	614.10	612.00
	EASEMENT	4443		-		96.6			33.9	33.9	0.8	45.4	1.89	63.9	54	0.11	65.0	"	40	200	0.8	0.22	603.22	603.00
																				1 1				
	185.						<u> </u>								2				241		5			
	н ′′	1447	M446		3.5	3.5	0.35	1,2		1.2	2,2	20	3.13	<i>3.8</i> 2	15	0.36	3.86	,013	3./	400	2.2	1.44	610.44	609.00
) N	MH46	MH48	250×400	2,3	5.8	0.35	0.8	1.2	2.0	2.5	22.2	2.96	5.92	18	0.32	5.92	"	<i>3</i> .3	470	2.5	1.50	609.00	607.50
	COLLECTOR ROAD	MH 49	MH48		2,3	2.3	0.35	0.8		0.8	1.2	20	3,13	2.52	12	0.51	2.53	"	3,2	230	1.2	1.18	610,00	608.82
	H II	14448	1450	380×360	3.1	11.2	0.35	1.1	2.8	3.9	1.9	24.7	2.80	10.92	24	0.24	11.0	"	-	400	1.9	0.96	607.50	106.54
	и 1/	MHSO	MHSI	240 X 380	2.1	13.3	0.35	0.7	3.9	4.6	0.5	26.8	2.67	12.3	24	0.30	12.3		3.9	130	0.5	·	606.59	
	11 11	MHSS	1454	150X240	0.8	0.8	0.35	0.3	. ii	0.3	1.3	20	3.13	0.94	12	0.30	1.94	"	2.5	200	1.3	0.60	61500	614.40
	() ()	MH54	N451		3.7	4.5	0.35	1.3	0.3	1.6	3.0	21.3	3,03	4.84	18	0.22	4.91	"	2.8	500	3.0	1.10	61440	613,30
	1/	MH51	M453	300×210	1.4	19.2	0.35	0.5	6.2	6.7	1.2	27.3	2.64	17.7		0.62		317	5.6	400	1.2	2.48	606,00	603.60
	LOCAL ROAD	M445	MH52	600 X 350	4.8	4.8	0.35	1.7		1.7	3.3	20	3.13	5.27	15	0.67	5.27	"			3.3		610.20	604.50
	COLLECTOR ROAD PARK	MH 52	MH53	200/400	1.8	6.6	0.35		1.7	2.3	1.8	23.3	2.89	6.65	18	041	6.7	"			1.8			602.86
	PARK	M453	LAKE #2			25.8	0.35	41.		9.0	0.4	28.5	2.58	23.2	30	0.33	23.5	<u> </u>	4.7	120	0.4	0.40	60286	602.46
		2			a ^a r	Marie					-77			>≆						** ;			<u> </u>	- 1
	Conector KOAD	M451	MHSE	Ü.	1.5		0.35	0.5			2,3		3.13	1.68			1.94	_	1		-		<u> </u>	. 5
		MH56				1.5	0.35		0.5	0.5	1,3	22.3	3./3	1.68	12	0.30	1.94	**	2.5	200	1.3		ļ	
																							ļ	
																								
					*																			
												L			L			<u></u>		<u></u>		l		

MIN. PIPE SIZE -12"DIA.

- 0.50

- 0.60

- 0· 70 -0.95

STORM CURVE ENTRY TIME VELOCITY RANGE - 2.5 to 10 F.PS PARKS & PLAYGROUNDS

RESIDENTIAL SINGLE LUPLEX - 0-35 ROW HOUSING - 0.50

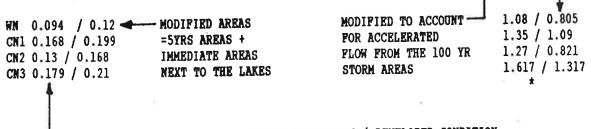
- 0.60

- 0.70 COMMERCIAL & INDUSTRIAL DENSELY BUILT, PAVED - 0.95

APARTMENTS

PROJECT NAME

STORM SEWER DESIGN CHART


SOUTHWOOD LAKES SUBDIVISION RCS SHEET Nº 3 OF 3 PRELIMINARY DESIGN CHECKED BY _____ PROJECT Nº 89-1284

	OCITY RANGE - 2:510 PIPE SIZE - 12" DIA		. 5	30		CIAL & INC)· 70)· 95			4	A/CT De	*					HECKED	DATE		ANUA	_	30 30	
	SEWER LOCATION				AREA	-	AxC			RAINFALL INTENSITY			Q	SEWER			R [DESIGN			PROFILE				
DWG.		FROM	то	LAND USE B REMARKS	AREA "A" (ACRES)	TOTAL AREA (ACRES)	RUNOFF COEF. "C"	INCR.	TOTAL LAT.	TOTAL SEW	FLOW SECT.	TIME	INTENSITY IN./HR.	REQUIRED C.F.S.			ACT CAP		VELOC. F.P.S.	(FT.)	(MIN.)	IN MH.	SEWER		D.S.
	LOCAL ROAD	146	MHG	330×300	2.3	2.3	0.35	0.8		0.8	1.5	1	3.13	,			3,08	.013	-	-	1.5			611.53	
	11	MH61	MHGZ	350×400	3.2	5.5	0.35	1.1	0.8	1.9			3.0/				5.73	"		400				611.00	
	н п	M462	M463	300 x 260			0.35	0.6	1.9	2.5	19	23.6	2.86	7.16			7.23			350		1		609.80	
	и "			430×300					2.5	3.5	3.0	25.5	2.75	9.62	7	-				550			W. C. C.	209.06	
	COLLECTOR KOAD	MH64	MH65	180×650	2.7		0.35		3.5	4.4	29	28.5	2.58	11.3		0.14		-	6	500				608.01	
	" "	MH65	MHGG	250x200	1./	14.1	0.35	0.4	4.4	4.8	27	31.4	2.43	4.7	27	0.15	11.9		3.0	400	2,2		0.60	607.31	606.71
	LOCAL ROAD	4.7	4,73	550x400	50	5.0	0.35	1.8		1.8	1	20	3/3	5.52	15	0.75	5.57	.0/3	45	300	1.1		2.25	614.00	611.75
	COLLECTOR ROAD	1	MH71		0,0	5.0	0,00	7.0		1.8	11	21.1	3.04					"		300		9		611.75	-
-	LOCAL ROAD			350x 330	27		0.35	0.9		0.9	19	20	3.13			T		"		280		500	,	62,00	
	TOCAL KORD			256 × 300				0.6	0.9	1.5	1.2		100		1		4.50		1	250				611.36	
	" "			250 X 30 0			0.35		1.5	2.1	12							"		250				610.13	
-	н "			2 X480X350					2.1	2.8			2.82			10	8.05	"		320				609.28	
	COLLECTOR ROAD		MHLL		/. /	13.0		<i>O</i> .,		4.6			2.72		,		12.5	V	 	150	1			608.45	_
																				-			35	-	-
								·							-										
	3																								
				e (X																9					
																				-	-	-			<u> </u>
															ļ					\vdash	-	\vdash			
									*																
								*											4						
		<u> </u>					51												-	-		-			lav.
		-			*						Y											-		ļ	
											4														
																					 	-		<u> </u>	-
		ļ																		-		-		-	-
		 																				-		 	+

HYDROLOGICAL SUMMARY OF WATERSHED PARAMETERS SOUTHWOOD LAKE DEVELOPMENT, WINDSOR, ONTARIO

EXISTING CONDITIONS

		12							
SUB CATCHMENT	AREA ACRES	AREA SQ MI	SLOPE PT/MI	Slope %	Length MI	*Length FT	CN	S	TL TIME LAG
					v				
Wl	60	0.09375	12.672	0.24	0.473	2497.44		. 285714	1.800152 1.563442
W2	97.83	0.152859	18.86	0.357196	0.53	2798.4	71.22 4		
··· W	157.83	0.246609	16.50759	0.312643	0.53	2798.4	70.75620	4.133033	1.032432
C10	57.3	0.089531	8.8	0.166666	0.4545	2399.76	70.64	4.156285	2.056326
A10	50	0.078125	2.78	0.052651	0.36	1900.8	70	4.285714	
Cl	107.3	0.167656	5.994780	0.113537	0.4545	2399.76	70.34177	4.216304	2.511683
220	20.1	0 050531	13.2	0.25	0.152	802.56	70.5	4.18439	7 0.701693
C20	38.1 45.0	0.059531 0.070312	9.183	0.173920	0.348	1837.44			4 1.654299
A20 C2	83.1 ·	0.129843	11.02472	0.208801	0.348	1837.44			2 1.500474
C2	03.1	0.129045	11.02372	77	*****				
C30	42.4	0.06625	17.6	0.333333	0.17	897.6			31 0.666771
A30	.72	0.1125	14.15	0.267992	0.495	2613.6			4 1.766643
C3	114.4	0.17875	15.42867	0.292209	0.495	2613.6	70.14083	4.25702	29 1.685422
DEVELOPED	CONDITIONS		9						
	¥-	361	AT 0.D.T.	SLOPE	LENGTH	LENGTH	CN -	S	TL TIME
SUB	AREA	area SQ Mi	SLOPE FT/MI	2FOLE	MI	FT	011	J	LAG
CATCHMENT	ACRES	öñ ⊌ī	£ 1/ m1	ď	1	••			
			50						
GROSS ARE	A		5						
WN	157.83	0.246609	8.836	0.167348	0.275	1452	79, 2	.658227	1.079688
CN1	107.3	0.167656	14.309	0.271003	0.492	1597.76			1.351224
CN1	83.1	0.129843	14.807	0.280435	0.466	2460.48			1.271848
CN3	114.4	0.17875	11.661	0.220852	0.542	2861.76	79 2	.658227	1.617303
••••	22								
DESIGN AR	EAS								
PROTON IN									

TOTAL AREA AS IN EXISITING CONDITIONS / DEVELOPED CONDITION